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AN INVISCID MODEL FOR SUBMERGED TRANSONIC WALL JETS

N. D. Ma lmuth* and V. D. Murphyt
Rockwell International , Science Cen ter

Thousand Oaks , California 91360

Abstract the far field is employed to condition th. numerical
problem and provide useful information about theNonlinear flow phenomena in transonic wall Jets decay of disturbances. Both free and wall jet s areprototypic of propulsive lift devices such as discussed for several examples illustrating variouslifting ejector augmenters and upper surface blown features of this class of flows.wings have been studied using the Karman—Guderley

model. Proa modern line relaxation methods , an Formulationefficient computational method has been developed
to treat th. diversity of shock patterns produced Referring to the physical configurationby various wall shapes and exi t conditions. Mao— depicted in Fig. 1, a je t is shown exhausting fromciated with the algorithm is a far field deterininea the exit OC bounded by the uall OQ and a mixinganalytically f rom the boundary value problem appro— layer which has been idealized as the slip line Cl.priate to subsonic conditions far downstream. This approximation neglects turbulent diffusionNumerical results for circular arc boattails m di— processes in the study of wav, interactions withcats rapid relaxation of the wall induced disturb— the shear layer, but these phenomena can beances , even in the supersonic region. Partially incorporated in later refinements. Furthermore, itsubsonic and supersonic jet exit conditions lead to will be assumed that wall and jet turning anglesthe anticipated wave interactions. Studies of other are small. In contrast to th. usual jet formula—shapes show that branch point singular behavior tions , in which an upstream cowl shap*~~s specified ,associated with satisfaction of a Kutta condition at or stagnation conditions are assumed,’ thisthe wall trailing ed ge is obtained by demanding analysis will treat a specified exit Mach numbercontinuity of the perturbation potential at this distribution, Additional assumption. are irrota-.point. tionality and subsonic conditions infinitely far

downstream. The methods applied here can beIntroduction generalized to cases where thes. restrictions are
not present. Finite length walls OQ are consideredIncreased emphasis on propulsive l if t  devices in keeping with relevance to upper surface blownin tactical and advanced aircraft has stressed the wings and other propulsive lift devices.need for greater understanding of the underlying

fluid dynamic processes which control the degree of Returning to Pig. 1, the equations of slipforce augmentation that can be achieved. Such con— lines S1(x ,y) ,  S2(x ,y) , and the wall boundary B(x ,y)cepts are exemplified in recently proposed super— are assumed as
critical jet flap implementations for advanced
highly maneuverable aircraft such as the NASA NI24AT.
Similar mechanisme are illustrated in upper surface Cl: S1 y — d  — 5G

1(x) — 0blowing configurations and lifting ejector aug-
menter. which are embodied in the Navy’s XFV—12A.1 QA: .‘ y — 6G

2
(x) — 0An essential element in the operation of these

devices are Coanda—type wail jets consisting of jets OQ: B y — df(x )  — 0
bound•d by curved walls in which a transonic pri-
mary flow entrain. an ambient secondary stream
through turbulent mixing processes. Existing models where 5 is a characteristic flow deflectionfor such vail jets stress the incompressible treat— parameter. In a small disturb.ncf ,~inie in whichment of these phenomena using eddy viscosity and the scaled jet exit height D dd ‘ , the wall lengthenergy methods. Correspondingly, there is a need length L~ ~nd ~~e transonic similarity parameterfor simulations that include the effects of non— K — (1 — ~~~~~~~~ are held fixed, as ~ 0, th.linearities , mixed flow, and wave interactions on asymptotic expansio ns of the velocity , pr essure F ,the development of the wall pressure distributions and density o areand overall augmentation forces.

Previous investigations of related phenomena ~ (x ,y;?ç,6 ,d ,L) e [1 + (z ,T;X ,D,L)are limited to the treatment of inviscid shockless 
~i r *free jets , and include the work of Chaplygin ,2 + . . .j t + 16~ + . . .Ji (l.la)Prankl,3 and Guderley4 all of which employ hodo—

graph methods. To study shock development and 
2’3mixed flow phenomena, we have applied modern relaxa— P/P, ~~ 1 — y6 $ + ... (1.lb)tion methods to treat arbitr ary jet exit velocity

distribution. and assess the influence of an adja— 
2/3cent wall boundary. ~fp,á 1 + ~ o + ... (l.lc)

In this paper the computationg model will be
discussed from analytical and numerical viewpoints, where the subscript signifies conditions at x •In analogy to unbounded cases such as airfoil f low,, $ is the p.rturbation2pot.ntial , F ,, is the ambient

pressure , U • çJt,,, a~, s yP,j~~5
Proj.c t Manager , Fluid Dynamics Research; Associate Fellow, AIMtMsIIIb.r of Technical Staff , Mathematical Sciences Group
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is the density, 0 is the speed of sound , 
~ 

i~ ~h. AG • 6(P ,Q) E 6(x—C)d (y—n)
flow velocity and the scaled coordinate Y — 6 / y
is also fixed in the limit. If a further t ransfor-
mation is introduced in which ~ — Y, a boundary where Q(~,r~) is the source point and P is the field
value problem can be formulated fo: the case of an point, Green’s theorem applied to the region OQAICO
elliptic far field. The region can be considered gives the following integrodifferential equation for
as ~the rectangular domain shown in Fig. 2 , .
corresponding to transfers of the boundary condi-
tions to the appropriate undisturbed streamlines 4
allowed by the small disturbance limit. Dropping
the tilde., the following small disturbance equa— i L
tion holds inside OQABCO

where

a+ a2/ay 2)~ ~~~ I d~ ( C(x ,y;~ ,n) (Bu2/B~)dn11 2 K  0 “0— (y+l~ (5u
2
/3*)/2K , (u

(1.2) • 
1

L 
$(~,0) (x,y;~ ,0)d~

0

where we define functions ~ and 0 such that I3~~ _c
1f ~~ (x,y;F ,0)dF~

u(x ,y) — ~(x ,Y) a
14 — J h(n)G(x,y;0,n)dn

•(x ,y) — 0(x ,Y) . 0

The quantity G nay be obtained from th. cosine
Invoking continuity of pressure and flow tangency transform where
along the slip lines , we have , with s B Dv~

~ I G cospxdx
•(x ,a) • 0 (1.3a) ‘~0

•y
(x ~ a) — G~ (x) ~~~~~~~ (1.3b) 2 

J
”G cospxdpC — —

•(x,0) — C
1 , L~~~x~~~°° (l.3c)

•( x,O) = G~ (x)  , L ~ x (l.3d) The subsidiary equations for ~ are

— p2E • 6(y—n)cosgwhere the constant C1 is to be computed by ite ra-
tion. In this approximation , the slip lines ar e 4~2
therefore not truly free , the unknown functions C’
being computed from the solution by a simple diffkr— .,.1d~l — f d G \ (d~~ • cosg
entistion. The re ining boundary conditions are 1dYJ~,,,~ 

—

O,(x~O) — ?(x) B F(x) - 0 < * ~ L (1.3.) B (C) y_n+ — (G)y_n.. — 0

— h(y) • MC!) (l.3f) ~ (p, 0;~~,n) — ~(p,a;c,n) • 0

Equation (l .3f) is repr.sentati,e.of the initial Implying that
exit velocity profile which conceivably is deter-
mined by the upstream duct contour and sts$nstion 

— i~ . n —  simbn cosp(pressure. C • y < n (j .4a )p sinhpa
Par Field

siphefl .inbp (v—e) cesoC 7 ‘ n (1.4b)To complet. the formelation of the problem for • p .1mbps
subsonic conditions far downstream, the asymptotic
behavior is derived in this section. Introducing
a Green’s function C satisfying homogeneous Equation. (1.4) can be inverted by a trsat ne

Dirichlst conditions on OA and CR, and cs emeoue of appropriate contour versions for the inversion
integrals, initially , without the coupC factor mad,
subsequently , including it using the shift theorem.lIe* nn conditions on OC and AR in Pig. 2 with

To obroin convergence med empon tial decay of the
integrond , the appropriat, closure for the contour
is a large se~~cirel. I~I • 1 1 ~~~~~~~ with In p ~ 0

p — nti , a • (.gez) (l ,2,3,...), give, ths following
final sapressine for C:

for a ~ 0. S~~~~~g the residues as the poles

- — - -  - —~~~~~. .— -—-——-———--—-— -
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gives a development dominated by these integrals.—XC • En ’sjn amy sin ~~~~~~~~~~~~~ Writing the inner integral of the first of (1.7),1 as

*
+ e~~~!*~~l} (1.5) 

,f ~~~~ )d~ - e f(C n)d~
5

0 M W / a

Ox f ~°~f (~~~)d~ ,+ 5Equation (1.5) ii valid for y 
~ r~, x ~ ~~, and can *be s~~~sd as the integral of a geometric series

and if the e~~~ factor of the first integral on the
left—hand side i~ indicative ef~~~~ behavior of •as ~~~~~ then u and f are O(e ) in this limit.—zaG • S(O(x+~),a(fl+y)) + S(~~(r+~).~~(fl—y)) If u2 and f are bounded on she range of integr ation ,
th. first integral converges and Sb. second is— s(oIx— ~I , n(n#y)) — s(oIx—~I ath—y)) O(.’~~X) as x~~~ s. The second integral in (1.7)
requires no such decomposition and is also conver—

• ~~~ 
{{l—cosa(n_y)sechctçx4oi - gent; hence , (1.6) follows. Evaluating the4r l—cosa(rply)secho x+C) j  remaining integrals , using (1.5) and (1.5’), the

fina l expre ssion for the far—field is

~ [l
coon

~~
—,)seche ’x—c ’,

l-coso(n+y)s.chn x-~ j }  
(1.1) 

•~ • C1(l-.T*) +

where
,~, —2x*+ e ) as ~~~~~ (l.8a)

S(A ,3) B En 1s~~~co5n3 — —Lu ll—.
_z

i -

1 where

1 in (i_~e Acosg + e 21 C~P B r
1
~~.~j .D 

sinWY*dy J •~ (~ ,y).iub~*d~
Z B A + ii

An inspection of these formulas reveals that C is 
— (Y)slnrV*dy + -_L_ • ~ O)cosh~*d~

Dv~exponentially small as x ~ ‘, and 1. logarithmically
singular at the source point as anticipated.

— 2C1sinh L0 (l.8b)Based on (1.5), the dominant term of the
asymptotic sxpansiou of Il as a ~~~“ is given by the
for~~ala *0 B 1rx/Dv ~ , B w~/D,~ , L0 B TL/DV~

II — ~~~ ~~~~~~~~ /1 sinolfldnf
X 
u2siflhO~dF~ 

B Y/D

(1.6) Nu.srical Analysis

The numerical procedure is similar to tha t onewher e in the evaluation,0 the contribution of the first developed by Muraa~
7 and extended by Jai.sson8simple pole of C~ vanishes , and integrals of the 

and Bailey and Ballhaus. Briefly , the transonicform
potential equation in divergent, form is dise~et iz.d
using centra l differences when the equation is

ç
a 
d f l (e

_
~~
*_C l f(~,n)dC elliptic and backward differences when it is hyper-

bolic. Thus, vs may writ e0 0

d n / e
~~~~~

f (

~
,n)d

~ 
(1.7) 

(K. — ~~i .2) + (.
10 0 

(l-u~~~ ($ -, ) 
- ~~~ (,2 _~ 2

* 2 X x T~~

*1+1/2 *1—1/2 2 *1+1/2 *1—1/2ari s .  The altiplication by u2 of the asymptotic
enpension represented by (1.5) as a ~ and its + 

~ 
—, — ~_~~(~$2 _~ 2sobesquens integration with respect to ( formally — *1—112 ~1—3 12 2 *1—112 xi—3/2*I’t

Th upper limit of the inner integral can be inter— + 
~
•y1+1I2 — •,~~~112)/q

1 (2.1)
prsted as ~ to within t.rme of higher order
involving ~~~~ as a 

~~~. This interprst.Uos is
med. in Eq. (1.$).

3
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~ (1_p
1) — + e1 l/~~~1_112 , e

3 
B l/~~~1~112

~ 
f$~,~

_0
~ 

— 
°i~~i—l ] and

LPi~1~2
P1 PiPi_l,2

— 
.2 1 + e 3 .

+ ~ [K — ~±i.(C°i—l + ~~~
1—1 2 \~i l/2 ~i—3/2 Then, the elliptic difference expression in Eq. (2.2 )
* + + + + + + given by

~ 
f$~

—$
~

_
~ — ~i—1~~i—2~ + ~~~~~ — 

0~—$~~~ 
+ + + -

L~ i—l /2~i ~~~~~~~~ ~ 
q~q~~112 q~q~_112 1 i+l~ i — i i—l 

• • — . + . 0
(2.2) L~i+l/2~i ~i~ i—l/2 i 1 i—I 2 1 3 i+1

where the missing subscript is j  when only l’s are is replaced by
- present and i when only f ’s are present. For -

example, •j~l 
B 

i—l,j and •j+l 
B 

i,j+l hJso, al L—i — 0~e2
/w — 0

1
e
2
(l—1/w) + e

3
O
i+l

— (*~~•~~~ — *i_l )1*Z qj  — C!~+i — ‘fj_i~
’2 where w is the overrelaxatlon parameter ; i.e.,

1 <w < 2. Note that if ~ 
a 1, there is no change

— — — .~ 
— ,

~ 
between the two expressions.

Pi~3/2 X~ _~ ~~~~~ q~_112 ~ To improve stability near the sonic points,
— — — 

,
~ — 

especially if a discontinuous wall boundary condi—
P1_1/2 Xj Xj_j  ~j+ 1/2 i+i j  tion is being considered , it was found necessary , as

in Bailey and Ballhaua,9 to add to Eq. (2.1) the
term

— xi+l 
— xi

(0
~ 

— $~) — (0~~~~~ — Oi l )

and 0 — c- X~~~X1_1 xt (x — ~~ 
)2

(0 if the point (x~.Y ) is elliptic ~ 1—1
U •~~

~ (i if the point (x1.Y~) is hyperbolic where £ is chosen to be in the range 0 ~~ £ ~ .5.

Boundary Conditions
Define

The boundary conditions 0(x,D) — 0 and
41 ~~~~~~~~~ — O~ — Oi l ’ 

O~(x ,0) — f’(x) may be incorporated into the numari—
• - ; ~~i 

B K — 
~~~~ 

( + J . cal scheme using 5he same techniques described in• 
“ ~i+l/2 ~i~4i2 / Murman and Cole.1 First, we shall concentrate on

discussing the boundary condition at the jet exit
then x — 0, which may be of one of two types: (A) sub-

sonic at the jet exit , and (b) partially or com-
pletely supersonic at the jet exit. The far field

(0 if VCi > 0 boundary condition will be treated later.
u — <

~l if VC~ <0 . (A) Subsonic at the Jet Exit

Here the boundary condition is
Mer~ the iterations are viewed as steps in pseudo—
time with $~ (NEW) and 0 (old) values. In addi-
tion, 0(O,Y )  • u(Y ) 0 ~ Y ~ 0

_______ 1 + 1 \ — • 1 1 \ where
— 

1k
~i~i l/2 ~i~ i—3/2 / i~P~P1_312 /

• K (y+ 1)N(Y ) > 0 for 0 < ‘1 ~ 0
These definitions guarantee that th. linearized
difference algorithm satisfies th~ von Neumann
stability criterion . See Jaasson for th. proof. In this case , we let *1/2 0, Xl — *1/2 — Ax12 ,

U — 0, and ii — 0, and we require x — x~ • Ax.Overrelaxation i, employed in the elliptic Tl?en, the x drivatives in Eqs. (2.1~ and (2.2)
region (U

j , j  
— U111 • 0) only. First , define become

~~ ttJ
~
.

- -  

4 
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- - -

/2 - ,
2
1/2)]/Ax •~~~

-,0) - O~
(L+,0) 0[~~ x3/2 - x1/2 > - ~~~~~ (~ 2

2 ~x3

is sat isfied by the solution for trailing edge- [K - 2 ‘ *3/2 + Oal/2)] [0~3/2 •xi/2]/Ax neighborhoods in unmixed flow. Because of (3), thenonlinear term in (1.2) can be assumed negligible,
• [K — ~~(~1’l + ~~~~~ and • ii locally harmonic in the scaled varia bles.J 1 — — H(y) Ax Let

(B) Partially or Completely Supersonic at the Z — x~ + iy , x* • x — L
Jet Exi t

9!arg z , r Em o d :
For this caom two boundary conditions are

required at a 0; namely,
w( z) • u(x *,y) — iv (x*,y) • complex velocity

•
~~

(0,Y) • H(T) 0 ~ V ~ D 
where

and
u •.x* , V s ,

7

$(0,Y) — g(T ) for y £ (0 ,D]
Then if the boundary conditions are locally
linearized near the point a — 0, we obtain

where —

v(x*,0) 7(L) B w , x* f 0 (4a)
K — (y+l)H(y) < 0

u(x *,0) — 0 , x0 > 0 (Lb )
For all points V £ (0 ,DJ in which

C — Cr41)H(T) > 0, g(T) need not exist. To dominan t order , a sufficient condition to satis-
If a point (;,Y~) is elliptic, ~. the fy (3) and (4) near the origin is that v has the •discretization given ~n case (A) . On the other following branch point behavior

bend, if (x ,Y ) ii hyperbolic , we assume the grid
may be exte’áde,l to the left by Ax/2, and vs let

— i(u + Bvc) as a -‘ 0 , (0 ‘(e <1! ) (5)*0 • 0, x
1 

— —Ax12 , and — •(0 ,T~) — g(Y
1

) . w

Using Taylor ’s theorem ,
where B is a real constan t to be determined b
matching with the outer nonlinear solution. ~qua—

6_j,j — — Ax•
~

(0,Y
1

) / 2  e g(Y~) — AxH(Y
1

)/2 tion (5) implies that

These values for 0 and O nay now be substi— — L ~ — ~~ 5~34~25j fl3~/~ - 

(6)
tuted into Eq. (2.9~ in th~~t5~rmaI way , and line
relaxation nay be applied to the first colume of
unknowns along ~ — ~~~. 

Several examples Co be discussed indicat , that theapp roach described previous ly in which ~ is main—
The far field boundary condition given by Eq. tam ed continuous at the veil trailing edge gives

numerical solutions that satisfy the Ent ta condition(1.8) conta ins two unkno wn constant., C and (3). However , a ri gorous proof tha t this is anwhich meat be deter mined in an iserati ’u4 fashiOt~.The basic techeique holds C~7 f ixed while C1 changes implication of the algorith m has not been qts~pted .
until th. solution converge . - Then , 

~~~, 
is updated A similar procedure has been used by Kruppl~ to sat—

by evaluating the integral, in Eq. (1.,1B), and she isfy the Kutta condition in the solution of the
procedure is repe ated until C,, also converges. In transonic small disturbance lifting airfoil problem.
order to determi ne C , the meBI network is swept
from left to right uliag line relaxation. After Result, and Discussion
th. potential is computed on the line x
extrapo lation of the interior points yields In addition to the assumptions given in the
•(L,0) B . Asaoning only that • is continuous at Introduction, the analysis prev iously described is
* • 1., vs ~es C — •(L,0) — •(x ,0) for x > L, which not directly applicable to choked flows where up—
guarantees tbst1O (*,O) — 0 for * > L. stream and downstrea m conditions are decoupled .

Sonic tones comprising the entire vertical dimension
Sintul*r Bshavior Bear V,U Trailing UI. of the flow field are thereby excluded. However , the

foregoing methods can be extended to handle such
It is physically plausible that a Kutta condi— cases.

stan given by
A na~~ er of examp les will now be considered .

S

For these cues , the associated well displacement

—~
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functions, and exit velocity distributions H(Y) are incompressible flow problems in which a singularity
given in Table 1. For these cases, K is unity and is reflected between free pressure boundaries
0 will take on this value for the remainder of this yielding an image development in which the strengths
paper. . alternate in sign- to satisfy the slip line

Table 1. Wall Jet Cases

Case f — Wall Shape Function H(Y) Remarks

1 f — f  — O  , O < x < l  L— 3 .8 for this and all
other cases

— ~(l_x)
2 

, 1 < a < 2  .075

- 3—2x , 2< x <L  O < Y < l

2 f — f 2 — — f 1

- 3  f — f  — o  , 0<x <l Has discontinuous slope
atx l

— Ex
2—l+2(L+l)(l—x)]/2L , 1 < x

4 f — f — 0 , 0 < x < 1 Has reflex curvature on
lO(L—l) 5 ir(x—l) l~ 

curved ramp por tion
— Lw r°5 L—L ç , 1 < a  < L

5 f . ’ f5 —x 2 , O < x < l  h . l  O < V < l / 2  • O.2 o n O < Y < l / 2

— l—2x , l < x <2  • O , l / 2 < Y < l

, 2 < x < L

Wall pressure distributions for the convex condition. * Thus , the relaxation to uniform condi—
ramp comprising Case 1. are shown in Pig. 3 for tions downstream which mus t be consistent with home—
K — 1 and K — 1.46. Interpreting these results as geneous conditions on the slip lines produces a more
those for different final L’s downstream but with rapid decay than found in unconfined flows.
the same 6, the decrease in M,~, leads to upstream
motion of the terminating shock but a preservation In Figs . 8a and 8b , the upper and lover slip
of the shock strength. There is a smooth accelera— lines obtained from integration of (L.3b ) and (l.3d )
tion to critical conditions with the location of are given for Case 1. It is evident from Fig. 8s
the sonic line established at the curvature dis— that the curved surface in this approximation turns
continuity, x — 1. These calculations , which are the flow so that the streams are parallel for a
typical of the ocher cases , cost approximately $60 In the near field , it is tvident from Fig. 8b that
on the Berkeley 7600 and ran 15—30 C? seconds, this is not quite the case. Asymptotic parallelism
Figure 4 shows a close—up of the pressures near the can be established for subsonic conditions far
t railing edgj. The dashed line has a slope propor— downstream by integration of the small disturbance
tional to ix* app ropriate to the singular behavior continuity equation. Thus
given by Eqs. (5) and (6) and the Kutta condition
(3). Isobars shown in Fig. 5 are consistent with d ~ l +1 2~these remarks , and demonstrate the satisfaction of G~(x) — G~(x) — 

~~~

- ~I ~~~~~~ — u )dY (7)
• homogeneous pressure boundary conditions on the X ,~ 0

slip lines. Because of the weakness of the singu-
lari ty, e.g. , $ r4/2 as r 0, special nuasri— and since u — Q(• **),  this expression showa that
cal treat ments ~~~~ as those of Woods~-’ were not c (a) ~~ (x) as a -‘ °‘. Equation (7) can also be
used . obtained by differen tiating (l.8a) with respect to

- V and using (l.3b) and (l.3d). For the case of aIn Figs. 6 and 7, rapid decay of the dis— free jet with a sy strical exit Mach number profile
turba nces is indicated. The re laxation length for function H, i . e . ,  H (Y 112) — H(l/2 V) , G1 — and
this decay from (l.Sb) with 0 • K — 1, is lr. This the divergence theorem or integration of (7) between
exponential decay is typical of flows confined by a • 0 and gives the displacement of the jet
jet boundarie, and is much more potent than for infinitely downstream as
bodies in unbounded fields . Qualitatively similar
effects have b~~n discussed by Murmsn ,’3 and 1 +1 2’Pin sola and La in connection with tunne l wall C1(’~ — 

~ J (KB(V ) ~~~ H j dYint erfere ncu a~ t ranson ic airfoils. The distin c— 0 L
tion between confined and unconftned flows can be
appreciated by an interpretation of the exponential *eerieu due to (1.5) arising in the far field • 

Such a series can be sumeed by recognizi ng that it
dsvela, mts douinat.d by (1.8). Because of is a partial fraction expansion of a hyperbolic
linearity of the far fiel4 th is series is directly function which is exponentially small as a ~related to expansion, occurring in ana logous consisten t with developments such as (l.8a) .

6
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where 01(0) — 0 has been used , analytical solution obtained either from suamed
eigenfunction expansions or transforms is:Insight into the mechanisms causing accelera-

tion to supercriticality can be obtained from the 2N —1 sinflow direction field for Case 1 shown in Fig. 9. u — ‘
~~

— tan ~~ (8a)For clarity, all isocline slopes have been magni— sinhxf ted by a factor of 100 , and only the entrance sec-
tion 0 <x  <1 is depicted. The expansion around 

~~~ coshx~ + cothe curved ramp on the interval 1. < a  < 2 , leads to v — — —• —‘ Zn — .~ (8b)upstream influence in the subsonic region which coshx — cosyturns most of the flow downward upstream of a — 1,producing throa ts and acceleration due to the and
st ream tube contraction required by the zero slope
boundary condition in that region. Also indicated 

tis the “ballooning” due to the singularity x , y E if?occurring at (0,1), the top point of the j et exi t
station. In contradistinction to the trailing edgewhere u 0, local linearization cannot be used to The slight discrepancies shown in Fig. 18 presumablycharacterize the flow behavior in this region , and derive from the small nonlinear effect associatedsome local similarity soluti&n aas~ be sought , with the finite K value, and truncation errors ofpresumably of the form • • x f(Y/x °) where n and ~ the diacre tiza t ions which are only approximatelyare exponents to be determined, second order for a non—uniform elliptic mesh. The

associated universal slip line curve is obtained3y contrast, the concave shape shown in Fig. from the following integral of (8b)10 produces the anticipated compressive decelera—
tion, which is also depict ed in Fig. 11. c ‘ — ‘2n+l x

— — 
4 ) (1 +~ (~fl’I4 )~ eTh. effect of a slope discontinuity is m di— fiX 2 r2 

‘

~ 0 ‘2n+l)2cated in Fig. 12. It ii evident that the numeri-
cal method accurately locates the initiation of the 

—lsonic line at the point (1,0) where the flow is ctnh (coshx)l (9)“tripped” to criticality by the acceleration
singulari ty at this Location. In most other
respects, the pressur e distribution is similar to wher , the daggers have been dropped. Equation (9)that for Case 1. has the following limiting behavior

In Fig. 13, the effect of a reflex curvature C (x)in accelerating the recompression process is shown . 
~~~~~~~~~~ — # 1~~ tn4+l~hc + O(x2)~. as x 0As related to comparable turning and wall deflec— NC w 2 - 

~2 /tion treated in Case 1, the strength of the ter-
minating shock is considerably increased as well as 

‘
,

the magnitude of the pressures near the trailing L.... , — I. — .~~.. c x + O( .2*) as xedge. fiX 2 
~2

The effect of mixed flow conditions at the and i. plotted in Fig. 19. Th. asymptotic halfexit i~ shown in Figs . - 14—16. Here , the function width thus checks that given by (8) when the non—H as veil as 0(0 ,?), compris , the Cauchy data linear second term to the integral is omitted.needed to pro perly pose the hyperbolic portion of
the initial manifold. Since the vertical velocity canc1u sioni~’can be derive d as a tangen tial differen-
t iation , the Cauchy data connotes specification of Submerged inviscid trsnsontc wall jets havethe additional velocity component for supers onic been treat ed for subsonic conditions infinitely farportions of the jet exit station. Figure 16 m d i— downstream for a specified exit velocity profile.caces that in addition to the usual terminating Unchoke d flow has been assumed and a series of wallshock , the transition from hyperbo lic to elliptic shapes hav , been considered giving rise to theflow occurs across a weak shock emanating from the following observations :
specified u discontinuity at (0,1/2). • Line relaxation provides an efficient means to

treat the diversity of wave patterns that canIn Fig. 17 , the behavior of centerline occur, particularly for mixed initial condi—press ures for various fre e jet cases is shown . The tions. Accordingly, inverse problems in whichmonotone subcritical behavior exhibited by these contours are identified to reduce wave dra g annonlinear cases has not yet bten corroborated by enhance thrust recovery may represent a feasi—rigorous proof based on the boundary value problem ble near—term possibility.with subsonic exit and downstream conditions. For
linearized subsonic flow, this prope rt y is obvious • A Kut t a condition can be satisfied mere ly byfrom the maximum modulus theorem. It should be requiring continuity of the potential acro ssnbted that in the free jet problem discussed here , the trailing edge. The numerical solutionspecified mass flow , pressu re ratio and final Mach tracks a lacal singular solution which has anumber ~~~uniquely determine S—the scale par ameter square root zero and is locally harmonic int for the jet displacement , scaled variables.

As a validation , a comparison of numerical and S As compare d to unconfined flows, the slip tinsPrsndtl—Glauert free jet solutions for u(x ,1f 2) for boundaries create a rapid decay of the die—if • 0.35 and K — 10 is shown in Fig. 18 , where the turbances. The functional form of the far

7



11field perturbation potential is an exponen— Krupp, J. A. ,  “The Numerical Calculation of Plane
tially damped sine similar to incompressible Steady Transonic Flows Past Thin Lifting Air-
flow but different in that its amplitude foils ,” PhD Thesis , University of Washington ,
interacts nonlinearly with the near field. Seattle, Wash., June 1971.

S Analysis of the free jet case indicates sub— 12woods, L. C. • “The Relaxation Treatment of Singu—
critical monotone atreameise variations of the lar Points in Poisson’s Equation,” Quart. 3. Mach.
pressure for a subsonic jet exit, as in linear and Appl. Math. VI pt. 2, 1953, pp. 163—183.
subsonic flow.

~~Murman, I. M., “Computation of Wall Effec ts in
5 Acceleration of the wall jet to criticality Ventilated Transonic Wind Tunnels,” AIAA Paper
over convex walls is accomplished by stream - 

72—1007, September 1972.
tube contractions and throats induced by up-
stream influence of the turning. 14Pinzola, N . and to , C. F., “Boundary In terference

at Subsonic Speeds in Wind Tunnels with Ventilated
e The upper slip line of the wall jet becomes Walls ,” AEDC Technical Report TR—69—47, May 1969.
asymptotically parallel to that emanating from
the trailing edge infinitely far downstream. —q ‘0
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